metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Diaguabis(5-carboxy-2-propyl-1Himidazole-4-carboxylato- $\kappa^2 N^3 O^4$)cobalt(II) 3.5-hydrate

Shi-Jie Li,^a Dong-Liang Miao,^a Wen-Dong Song,^b* Shao-Wei Tong^a and Jing-Bo An^a

^aCollege of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China, and ^bCollege of Science, Guangdong Ocean University, Zhanjiang 524088, People's Republic of China Correspondence e-mail: songwd60@163.com

Received 13 December 2010; accepted 16 December 2010

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; disorder in main residue; R factor = 0.050; wR factor = 0.101; data-to-parameter ratio = 11.3.

In the title complex, $[Co(C_8H_9N_2O_4)_2(H_2O)_2]\cdot 3.5H_2O$, the Co^{II} cation is six-coordinated by two H₂pimda⁻ ligands (H₃pimda is 2-propyl-1*H*-imidazole-4,5-carboxylic acid) and two water molecules in a distorted octahedral environment. The crystal structures features a three-dimensional network stabilized by extensive O-H···O and N-H···O hydrogen bonds. The propyl groups of the ligands are disordered over two sets of sites with refined occupancies of 0.673 (8):0.327 (8) and 0.621 (17):0.379 (17). One of the water molecules is located on a site with half-occupancy.

Related literature

For our past work based on H₃pimda, see: Yan et al. (2010); Li, Dong et al. (2010); Song et al. (2010); He et al. (2010); Fan et al. (2010); Li, Miao et al. (2010); Li, Song et al. (2010).

Experimental

Cry

Crystal data	
$[Co(C_8H_9N_2O_4)_2(H_2O)_2]$ ·3.5H ₂ O	b = 10.6131 (11) Å
$M_r = 552.36$	c = 11.2529 (13) Å
Triclinic, P1	$\alpha = 82.371 \ (1)^{\circ}$
a = 10.405 (1) Å	$\beta = 83.743 \ (1)^{\circ}$

 $\gamma = 87.330 \ (2)^{\circ}$ V = 1223.7 (2) Å³ Z = 2Mo $K\alpha$ radiation

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2004) $T_{\min} = 0.873, T_{\max} = 0.948$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.101$ S = 1.034249 reflections 376 parameters

 $\mu = 0.77 \text{ mm}^{-1}$ T = 298 K $0.18 \times 0.09 \times 0.07 \text{ mm}$

6529 measured reflections 4249 independent reflections 2522 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$

18 restraints H-atom parameters constrained $\Delta \rho_{\rm max} = 0.33 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.31 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

 $D - H \cdot \cdot \cdot A$ D-H $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $D - H \cdot \cdot \cdot A$ $N2-H2\cdots O4W$ 0.86 1.89 2.745 (5) 171 $N4-H4\cdots O5W$ 0.86 1.93 2.752 (5) 160 O3−H3···O2 0.82 1.68 2.500(4)179 O7−H7···O6 0.82 1.64 2.461 (4) 176 $O1W-H1W \cdot \cdot \cdot O8^{ii}$ 0.85 1.87 2.715 (4) 178 $O1W - H2W \cdot \cdot \cdot O3W^{iii}$ 0.85 1.81 2.661(4)177 2.791 (4) $O2W - H4W \cdots O7W^{iv}$ 0.85 1 94 174 O2W-H3W···O8[™] 0.85 2.05 2.897(4)175 O3W−H5W···O2^{iv} 0.85 1.95 2.796 (5) 172 O3W−H6W···O5^{vi} 2.05 2.895 (4) 0.85 172 O3W−H6W···O6^{vi} 0.85 2.63 3.206 (4) 127 2.674 (7) $O4W - H8W \cdots O6W$ 0.85 1.89 152 $O5W - H9W \cdots O3W^{iii}$ 153 0.85 2.082.867(5) $O5W-H10W\cdots O7W^{iv}$ 0.85 2 33 3.092 (5) 149 O6W−H12W···O6W^{vii} 0.85 1.68 2.162 (11) 113 O6W−H12W···O1^{viii} 0.85 2.14 2.730 (6) 126 $O6W - H11W \cdot \cdot \cdot O5W^{iv}$ 0.85 2.588 (7) 121 2.05 -x, -y + 2, -z; (iii) Symmetry codes: (i) x - 1, y, z; (ii) x, y, z - 1;(iv) -x + 1, -y + 1, -z + 1; (v) x + 1, y, z; (vi) -x + 1, -y + 2, -z + 1;(vii)

-x + 1, -y + 1, -z + 2; (viii) x, y, z + 1.

Data collection: SMART (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The work was supported by the Nonprofit Industry Foundation of the National Ocean Administration of China (grant No. 2000905021), the Guangdong Oceanic Fisheries Technology Promotion Project [grant No. A2009003–018(c)], the Guangdong Chinese Academy of Science comprehensive strategic cooperation project (grant No. 2009B091300121), the Guangdong Province key project in the field of social development [grant No. A2009011-007(c)], the Science and Technology Department of Guangdong Province Project (grant No. 00087061110314018) and the Guangdong Natural Science Fundation (No. 925240880100002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5437).

References

- Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fan, R.-Z., Li, S.-J., Song, W.-D., Miao, D.-L. & Hu, S.-W. (2010). Acta Cryst. E66, m897–m898.
- He, L.-Z., Li, S.-J., Song, W.-D. & Miao, D.-L. (2010). Acta Cryst. E66, m896. Li, S.-J., Dong, J.-J., Song, W.-D., Yan, J.-B. & Li, S.-H. (2010). Acta Cryst. E66, m1175-m1176.
- Li, S.-J., Miao, D.-L., Song, W.-D., Li, S.-H. & Yan, J.-B. (2010). Acta Cryst. E66, m1096–m1097.
- Li, S.-J., Song, W.-D., Li, S.-H., Dong, J.-J. & Yan, J.-B. (2010). Acta Cryst. E66, m1094–m1095.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Song, W.-D., Yan, J.-B., Li, S.-J., Miao, D.-L. & Li, X.-F. (2010). Acta Cryst. E66, m53.
- Yan, J.-B., Li, S.-J., Song, W.-D., Wang, H. & Miao, D.-L. (2010). Acta Cryst. E66, m99.

Acta Cryst. (2011). E67, m106-m107 [doi:10.1107/S1600536810052785]

$Diaquabis (5-carboxy-2-propyl-1 H-imidazole-4-carboxylato-\kappa^2 N^3, O^4) cobalt (II) \ 3.5-hydrate$

S.-J. Li, D.-L. Miao, W.-D. Song, S.-W. Tong and J.-B. An

Comment

The 2-propyl-1*H*-imidazole-4,5-carboxylate (H₃pimda) ligand has been used to obtain new metal-organic complexes by our research group, such as poly[diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $k^3 N^3$, O^4 , O^5)calcium(II)] (Song *et al.*, 2010), [diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- k^2N^3 , O^4) manganese(II)]*N*,*N*-dimethylformamide (Yan *et al.*, 2010), Diaquabis(4-carboxy-2-propyl-1*H*-imidazole-5-carboxylato- k^2N^3 , O^4) copper(II) *N*,*N*-dimethylformamide disolvate (He *et al.*, 2010), Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- k^2N^3 , O^4)-manganese(II) tetra-hedrate (Fan *et al.*, 2010), Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- k^2N^3 , O^4)-manganese(II) 3.5-hydrate (Li, Miao *et al.*, 2010), Diaquabis (5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- k^2N^3 , O^4)-cadmium(II) 3.5-hydrate (Li, Song *et al.* 2010) and Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- k^2N^3 , O^4)-cadmium(II) 3.5-hydrate (Li, Dong *et al.* 2010). In this paper, we report the synthesis and structure of a new Co(II) complex based the same ligand.

As illustrated in figure 1, the title complex molecule is isomorphous with Ni(II), Mn(II), Cd(II) and Zn(II) analogues (Fan *et al.*, 2010; Li, Dong *et al.*, 2010; Li, Song *et al.*, 2010; Li, Miao *et al.*, 2010), Similar structural description applies to the present isomorphous complex. The Co^{II} is six-coordinated in a distorted octahedral geometry. the H₃pimda acts as a bidentate mode to chelate the center Co(II). one carboxy group of the ligand was delocalized and the other was protonated, indicated by the difference of the bond lengths. The dihedral angle between the two imidazole rings is 84.2 (2) %A. In the crystal structure, the three-dimensional supramolecular framework is stabilized by extensive O—H…O and N—H…O hydrogen bonds. The propyl groups of H₃pimda are disordered over two sets of sites with refined occupiencies of 0.673 (8):0.327 (8) and 0.621 (17): 0.379 (17). One of the water molecules is half occupied.

Experimental

A mixture of $Co(NO_3)_2$ (0.5 mmol, 0.06 g) and 2-propyl-1*H*-imidazole-4,5-dicarboxylic acid(0.5 mmol, 0.99 g) in 15 ml of H₂O solution was sealed in an autoclave equipped with a Teflon liner (20 ml) and then heated at 433K for 4 days. Crystals of the title compound were obtained by slow evaporation of the solvent at room temperature.

Refinement

Water H atoms were located in a difference Fourier map and were allowed to ride on the parent atom, with $U_{iso}(H) = 1.5U_{eq}(O)$. Carboxyl H atoms were located in a difference map and refined with distance restraints, $U_{iso}(H) = 1.5U_{eq}(O)$. Other H atoms were placed at calculated positions and were treated as riding on parent atoms with C—H = 0.96 (methyl), 0.97 (methylene) and N—H = 0.86 Å, $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C,N)$. The propyl groups of H₃pimda are disordered over two sites with refined occupancies of 0.673 (8):0.327 (8) and 0.621 (17):0.379 (17). C—C distance restraints were applied

for the disordered components. The O3W water molecule is located close to an inversion centre, its occupancy factor was refined to 0.49 (1) and was fixed as 0.5 at the final refinements.

Figures

Fig. 1. The structure of the title compound, showing the atomic numbering scheme. Non-H atoms are shown with 30% probability displacement ellipsoids.

Diaquabis(5-carboxy-2-propyl-1*H*-imidazole-4-carboxylato- $\kappa^2 N^3$, O^4) cobalt(II) 3.5-hydrate

Crystal data

$[Co(C_8H_9N_2O_4)_2(H_2O)_2]$ ·3.5H ₂ O	Z = 2
$M_r = 552.36$	F(000) = 576
Triclinic, P1	$D_{\rm x} = 1.499 {\rm ~Mg~m}^{-3}$
Hall symbol: -P 1	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 10.405 (1) Å	Cell parameters from 1702 reflections
b = 10.6131 (11) Å	$\theta = 2.5 - 25.9^{\circ}$
c = 11.2529 (13) Å	$\mu = 0.77 \text{ mm}^{-1}$
$\alpha = 82.371 \ (1)^{\circ}$	T = 298 K
$\beta = 83.743 \ (1)^{\circ}$	Cube, red
$\gamma = 87.330 \ (2)^{\circ}$	$0.18 \times 0.09 \times 0.07 \text{ mm}$
$V = 1223.7 (2) \text{ Å}^3$	

Data collection

Bruker SMART 1000 CCD area-detector diffractometer	4249 independent reflections
Radiation source: fine-focus sealed tube	2522 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.034$
ϕ and ω scans	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)	$h = -12 \rightarrow 11$
$T_{\min} = 0.873, T_{\max} = 0.948$	$k = -12 \rightarrow 11$
6529 measured reflections	$l = -13 \rightarrow 12$

Refinement

Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H-atom parameters constrained

<i>S</i> = 1.03	$w = 1/[\sigma^2(F_o^2) + (0.0305P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
4249 reflections	$(\Delta/\sigma)_{\text{max}} = 0.001$
376 parameters	$\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$
18 restraints	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic or	equivalent isotropic	displacement	parameters	(Å ²	£)
-------------------------------	------------------	----------------------	--------------	------------	-----------------	----

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
Co1	0.34903 (6)	0.79029 (6)	0.19293 (6)	0.0468 (2)	
N1	0.3265 (3)	0.7131 (3)	0.3764 (3)	0.0447 (9)	
N2	0.3046 (3)	0.6416 (4)	0.5685 (3)	0.0548 (11)	
H2	0.2910	0.6408	0.6453	0.066*	
N3	0.1480 (3)	0.7861 (3)	0.1738 (3)	0.0419 (9)	
N4	-0.0526 (3)	0.7781 (4)	0.1332 (3)	0.0504 (10)	
H4	-0.1231	0.7478	0.1171	0.060*	
01	0.3958 (3)	0.5942 (3)	0.1833 (3)	0.0525 (8)	
O2	0.4033 (3)	0.4039 (3)	0.2939 (3)	0.0629 (9)	
O3	0.3743 (3)	0.3174 (3)	0.5125 (3)	0.0670 (10)	
H3	0.3830	0.3458	0.4408	0.100*	
O7W	0.3316 (3)	0.3924 (3)	0.6857 (3)	0.0687 (11)	
05	0.2850 (3)	0.9854 (3)	0.2050 (3)	0.0533 (9)	
O6	0.1184 (3)	1.1214 (3)	0.1846 (3)	0.0633 (10)	
07	-0.1073 (3)	1.1143 (3)	0.1400 (3)	0.0606 (9)	
H7	-0.0327	1.1136	0.1571	0.091*	
O8	-0.2424 (3)	0.9744 (3)	0.1005 (3)	0.0585 (9)	
O1W	0.3850 (3)	0.8336 (3)	0.0107 (3)	0.0766 (12)	
H1W	0.3418	0.8937	-0.0259	0.115*	
H2W	0.4514	0.8160	-0.0359	0.115*	
O2W	0.5401 (3)	0.8259 (3)	0.2132 (3)	0.0758 (12)	
H4W	0.5741	0.7575	0.2459	0.114*	
H3W	0.6004	0.8732	0.1786	0.114*	
O3W	0.5950 (3)	0.7723 (3)	0.8703 (3)	0.0881 (12)	
H5W	0.5992	0.7238	0.8155	0.132*	
H6W	0.6319	0.8410	0.8414	0.132*	
O4W	0.2706 (4)	0.6669 (4)	0.8096 (3)	0.1170 (16)	

H7W	0.2264	0.7287	0.8359	0.176*	
H8W	0.2895	0.6117	0.8675	0.176*	
O5W	0.7616 (4)	0.6532 (4)	0.0420 (4)	0.1161 (15)	
H9W	0.7321	0.7065	-0.0124	0.174*	
H10W	0.7077	0.6476	0.1048	0.174*	
O6W	0.4094 (5)	0.5155 (6)	0.9607 (5)	0.0591 (18)	0.50
H12W	0.4516	0.5578	1.0016	0.089*	0.50
H11W	0.3534	0.4759	1.0109	0.089*	0.50
C1	0.3847 (4)	0.5225 (5)	0.2824 (4)	0.0453 (12)	
C2	0.3472 (4)	0.5846 (4)	0.3905 (4)	0.0388 (11)	
C3	0.3330 (4)	0.5379 (4)	0.5099 (4)	0.0424 (11)	
C4	0.3452 (4)	0.4105 (5)	0.5768 (5)	0.0503 (13)	
C5	0.3013 (5)	0.7456 (5)	0.4860 (5)	0.0585 (14)	
C6	0.2961 (17)	0.880 (3)	0.514 (2)	0.073 (6)	0.673 (8)
H6A	0.3453	0.9326	0.4496	0.088*	0.673 (8)
H6B	0.3353	0.8828	0.5880	0.088*	0.673 (8)
C7	0.1592 (11)	0.9306 (11)	0.5282 (9)	0.090 (3)	0.673 (8)
H7A	0.1126	0.8861	0.5997	0.108*	0.673 (8)
H7B	0.1159	0.9180	0.4589	0.108*	0.673 (8)
C8	0.1612 (10)	1.0747 (8)	0.5395 (9)	0.128 (5)	0.673 (8)
H8A	0.2085	1.0867	0.6055	0.192*	0.673 (8)
H8B	0.0742	1.1075	0.5537	0.192*	0.673 (8)
H8C	0.2023	1.1188	0.4662	0.192*	0.673 (8)
С9	0.1692 (5)	1.0100 (5)	0.1877 (4)	0.0476 (12)	
C10	0.0912 (4)	0.9051 (4)	0.1699 (4)	0.0406 (11)	
C11	-0.0345 (4)	0.9016 (4)	0.1443 (4)	0.0410 (11)	
C12	-0.1370 (5)	1.0008 (5)	0.1268 (4)	0.0485 (13)	
C13	0.0583 (4)	0.7107 (5)	0.1515 (4)	0.0478 (12)	
C14	0.064 (3)	0.569 (3)	0.1696 (16)	0.054 (5)	0.621 (17)
H14A	0.1520	0.5390	0.1479	0.064*	0.621 (17)
H14B	0.0087	0.5375	0.1170	0.064*	0.621 (17)
C15	0.022 (2)	0.517 (2)	0.2987 (18)	0.068 (6)	0.621 (17)
H15A	-0.0693	0.5370	0.3172	0.081*	0.621 (17)
H15B	0.0697	0.5567	0.3521	0.081*	0.621 (17)
C16	0.0448 (10)	0.3732 (14)	0.3208 (11)	0.099 (5)	0.621 (17)
H16A	0.0004	0.3336	0.2659	0.148*	0.621 (17)
H16B	0.0127	0.3423	0.4021	0.148*	0.621 (17)
H16C	0.1359	0.3532	0.3083	0.148*	0.621 (17)
C6'	0.237 (3)	0.867 (5)	0.522 (4)	0.067 (11)	0.327 (8)
H6'1	0.1850	0.8512	0.5990	0.080*	0.327 (8)
H6'2	0.1827	0.9061	0.4619	0.080*	0.327 (8)
C7'	0.350 (2)	0.954 (2)	0.532 (2)	0.083 (7)	0.327 (8)
H7'1	0.4079	0.9571	0.4579	0.099*	0.327 (8)
H7'2	0.3148	1.0395	0.5379	0.099*	0.327 (8)
C8'	0.426 (2)	0.9112 (19)	0.637 (2)	0.118 (9)	0.327 (8)
H8'1	0.3673	0.8984	0.7099	0.177*	0.327 (8)
H8'2	0.4856	0.9752	0.6444	0.177*	0.327 (8)
H8'3	0.4721	0.8329	0.6252	0.177*	0.327 (8)
C14'	0.083 (5)	0.576 (5)	0.122 (3)	0.055 (8)	0.379 (17)

H14C	0.1738	0.5519	0.1256	0.066*	0.379 (17)
H14D	0.0623	0.5708	0.0407	0.066*	0.379 (17)
C15'	-0.0004 (18)	0.4828 (17)	0.212 (2)	0.068 (6)	0.379 (17)
H15C	-0.0910	0.5058	0.2064	0.082*	0.379 (17)
H15D	0.0148	0.3974	0.1907	0.082*	0.379 (17)
C16'	0.029 (4)	0.484 (4)	0.342 (3)	0.083 (12)	0.379 (17)
H16D	0.0090	0.4031	0.3881	0.125*	0.379 (17)
H16E	-0.0218	0.5500	0.3768	0.125*	0.379 (17)
H16F	0.1194	0.4990	0.3429	0.125*	0.379 (17)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Col	0.0410 (4)	0.0498 (4)	0.0465 (4)	0.0032 (3)	-0.0074 (3)	0.0067 (3)
N1	0.047 (2)	0.045 (2)	0.042 (2)	0.0015 (18)	-0.0092 (18)	-0.001 (2)
N2	0.063 (3)	0.062 (3)	0.037 (2)	0.011 (2)	-0.0069 (19)	-0.002 (2)
N3	0.039 (2)	0.038 (2)	0.047 (2)	0.0006 (18)	-0.0086 (18)	0.0025 (18)
N4	0.039 (2)	0.054 (3)	0.057 (3)	-0.002 (2)	-0.0136 (19)	0.005 (2)
01	0.058 (2)	0.059 (2)	0.0373 (19)	0.0130 (16)	-0.0062 (15)	0.0021 (16)
02	0.090 (3)	0.046 (2)	0.053 (2)	0.0097 (19)	-0.0150 (18)	-0.0059 (17)
O3	0.087 (3)	0.052 (2)	0.059 (2)	0.002 (2)	-0.0148 (19)	0.0103 (19)
O7W	0.066 (2)	0.086 (3)	0.045 (2)	0.0101 (19)	-0.0042 (18)	0.0201 (19)
05	0.0476 (19)	0.049 (2)	0.064 (2)	-0.0059 (16)	-0.0147 (16)	-0.0017 (16)
06	0.060 (2)	0.044 (2)	0.087 (3)	0.0017 (17)	-0.0118 (18)	-0.0077 (19)
07	0.049 (2)	0.056 (2)	0.076 (3)	0.0130 (18)	-0.0102 (17)	-0.0079 (19)
08	0.0412 (19)	0.063 (2)	0.067 (2)	0.0035 (17)	-0.0112 (17)	0.0136 (18)
O1W	0.061 (2)	0.099 (3)	0.054 (2)	0.0337 (19)	0.0069 (17)	0.026 (2)
O2W	0.044 (2)	0.081 (3)	0.092 (3)	-0.0128 (18)	-0.0180 (18)	0.040 (2)
O3W	0.080 (3)	0.082 (3)	0.104 (3)	-0.030 (2)	0.029 (2)	-0.042 (2)
O4W	0.156 (4)	0.133 (4)	0.067 (3)	0.057 (3)	-0.025 (3)	-0.041 (3)
O5W	0.105 (3)	0.131 (4)	0.129 (4)	0.012 (3)	-0.060 (3)	-0.041 (3)
O6W	0.066 (4)	0.061 (4)	0.052 (4)	-0.008 (3)	-0.009 (3)	-0.012 (3)
C1	0.041 (3)	0.047 (3)	0.048 (3)	0.003 (2)	-0.011 (2)	-0.002 (3)
C2	0.034 (2)	0.042 (3)	0.039 (3)	0.001 (2)	-0.007 (2)	0.001 (2)
C3	0.033 (2)	0.049 (3)	0.044 (3)	0.002 (2)	-0.007 (2)	0.000 (2)
C4	0.037 (3)	0.064 (4)	0.047 (3)	0.001 (2)	-0.010 (2)	0.007 (3)
C5	0.073 (4)	0.051 (4)	0.051 (3)	0.011 (3)	-0.010 (3)	-0.007 (3)
C6	0.089 (16)	0.069 (11)	0.062 (8)	0.002 (15)	-0.006 (11)	-0.008 (7)
C7	0.105 (9)	0.076 (8)	0.087 (8)	0.014 (7)	-0.009 (6)	-0.012 (6)
C8	0.176 (11)	0.061 (7)	0.140 (10)	0.024 (7)	0.016 (8)	-0.020 (6)
C9	0.049 (3)	0.046 (3)	0.046 (3)	0.000 (3)	-0.004 (2)	0.002 (2)
C10	0.038 (3)	0.042 (3)	0.041 (3)	-0.002 (2)	-0.005 (2)	0.002 (2)
C11	0.043 (3)	0.036 (3)	0.042 (3)	-0.001 (2)	-0.003 (2)	0.002 (2)
C12	0.045 (3)	0.052 (4)	0.043 (3)	0.001 (3)	-0.001 (2)	0.007 (3)
C13	0.046 (3)	0.043 (3)	0.053 (3)	0.001 (2)	-0.011 (2)	0.001 (2)
C14	0.051 (10)	0.048 (10)	0.063 (14)	-0.004 (7)	-0.016 (11)	-0.001 (13)
C15	0.066 (8)	0.050 (10)	0.082 (17)	0.004 (6)	-0.017 (11)	0.016 (11)
C16	0.091 (8)	0.055 (9)	0.143 (11)	0.000 (6)	-0.010 (7)	0.008 (8)

C6'	0.07(3)	0.07(2)	0.060 (16)	0.02 (3)	-0.01(2)	-0.007(14)
C7'	0.102(19)	0.072(17)	0.073 (15)	0.001 (14)	-0.011(12)	-0.009(13)
C8'	0.122(19)	0 101 (17)	0.13(2)	-0.005(14)	0.002(16)	-0.031(15)
C14'	0.053(13)	0.047(12)	0.15(2)	-0.003(10)	-0.010(18)	0.001(2)
C15'	0.071 (11)	0.051 (12)	0.079(17)	-0.001(9)	-0.009(10)	0.01(10)
C16'	0.074 (13)	0.09(3)	0.08(2)	-0.009(17)	-0.030(14)	0.032(15)
010	0.071(15)	0.07 (3)	0.00 (2)	0.009 (17)	0.050 (11)	0.052 (15)
Geometric param	neters (Å, °)					
Co1—O1W		2.038 (3)	С5—	-C6'	1.51 ((5)
Co1—O2W		2.083 (3)	C6–	-C7	1.500	(19)
Co1—N1		2.110 (4)	С6—	-H6A	0.970	0
Co1—N3		2.129 (3)	С6—	-H6B	0.970	0
Col—Ol		2.130 (3)	C7–	-C8	1.552	(13)
Col—O5		2.163 (3)	C7–	-H7A	0.970	0
N1—C5		1.319 (5)	C7–	–H7B	0.970	0
N1—C2		1.362 (5)	C8-	-H8A	0.960	0
N2—C5		1.347 (5)	C8-	-H8B	0.960	0
N2—C3		1.361 (5)	C8-	-H8C	0.960	0
N2—H2		0.8600	С9—	-C10	1.455	(6)
N3—C13		1.323 (5)	C10-	—C11	1.373	(5)
N3—C10		1.366 (5)	C11-	—C12	1.473	(6)
N4—C13		1.349 (5)	C13-	—C14	1.49 ((3)
N4—C11		1.357 (5)	C13-	—C14'	1.52 ((6)
N4—H4		0.8600	C14	—C15	1.51 (2)
O1—C1		1.261 (5)	C14	—H14A	0.970	0
O2—C1		1.256 (5)	C14	—H14B	0.970	0
O3—C4		1.306 (6)	C15-	—C16	1.52 ((2)
O3—H3		0.8200	C15-	—H15A	0.970	0
O7W—C4		1.209 (5)	C15-	—H15B	0.970	0
О5—С9		1.252 (5)	C16	—H16A	0.960	0
О6—С9		1.271 (5)	C16	—H16B	0.960	0
O7—C12		1.289 (5)	C16	—Н16С	0.960	0
O7—H7		0.8200	C6'-	C7'	1.54 ((5)
O8—C12		1.221 (5)	C6'-	—H6'1	0.970	0
O1W—H1W		0.8500	C6'-	—Н6'2	0.970	0
O1W—H2W		0.8500	C7'-	C8'	1.51 ((3)
O2W—H4W		0.8500	C7'-	—H7'1	0.970	0
O2W—H3W		0.8500	C7'-	-H7'2	0.970	0
O3W—H5W		0.8500	C8'-	-H8'1	0.960	0
O3W—H6W		0.8500	C8'-	-H8'2	0.960	0
O4W—H7W		0.8499	C8'-	—Н8'3	0.960	0
O4W—H8W		0.8499	C14	'—C15'	1.54 ((4)
O5W—H9W		0.8499	C14	—H14С	0.970	0
O5W—H10W		0.8503	C14	—H14D	0.970	0
O6W—H12W		0.8501	C15	'—C16'	1.53 ((5)
O6W—H11W		0.8503	C15	—Н15С	0.970	0
C1—C2		1.467 (6)	C15	—H15D	0.970	0
C2—C3		1.364 (5)	C16	-H16D	0.960	0

C3—C4	1.465 (6)	C16'—H16E	0.9600
C5—C6	1.50 (3)	C16'—H16F	0.9600
O1W—Co1—O2W	90.34 (12)	С8—С7—Н7В	110.0
O1W—Co1—N1	169.71 (14)	H7A—C7—H7B	108.4
O2W—Co1—N1	88.21 (12)	05	122.9 (5)
O1W—Co1—N3	89.35 (12)	O5—C9—C10	117.7 (4)
O2W—Co1—N3	170.64 (14)	O6—C9—C10	119.5 (4)
N1—Co1—N3	93.72 (13)	N3—C10—C11	110.0 (4)
O1W—Co1—O1	91.72 (13)	N3—C10—C9	118.4 (4)
O2W—Co1—O1	91.42 (12)	C11—C10—C9	131.6 (4)
N1—Co1—O1	78.13 (13)	N4—C11—C10	105.1 (4)
N3—Co1—O1	97.94 (13)	N4—C11—C12	122.1 (4)
O1W—Co1—O5	89.43 (12)	C10-C11-C12	132.7 (4)
O2W—Co1—O5	93.14 (12)	O8—C12—O7	123.5 (5)
N1—Co1—O5	100.82 (13)	O8—C12—C11	120.6 (5)
N3—Co1—O5	77.50 (13)	O7—C12—C11	116.0 (4)
O1—Co1—O5	175.29 (11)	N3—C13—N4	110.3 (4)
C5—N1—C2	106.3 (4)	N3—C13—C14	126.2 (12)
C5—N1—Co1	142.2 (3)	N4—C13—C14	122.2 (12)
C2—N1—Co1	111.5 (3)	N3—C13—C14'	125.0 (19)
C5—N2—C3	108.6 (4)	N4—C13—C14'	123.3 (19)
C5—N2—H2	125.7	C14—C13—C14'	21.0 (15)
C3—N2—H2	125.7	C13—C14—C15	112 (2)
C13—N3—C10	106.0 (4)	C13—C14—H14A	109.3
C13—N3—Co1	142.2 (3)	C15—C14—H14A	109.3
C10—N3—Co1	111.3 (3)	C13—C14—H14B	109.3
C13—N4—C11	108.7 (4)	C15—C14—H14B	109.3
C13—N4—H4	125.7	H14A—C14—H14B	108.0
C11—N4—H4	125.7	C14—C15—C16	111 (2)
C1—O1—Co1	115.7 (3)	C14—C15—H15A	109.3
С4—О3—Н3	109.5	C16-C15-H15A	109.3
C9—O5—Co1	114.9 (3)	C14—C15—H15B	109.3
С12—О7—Н7	109.5	С16—С15—Н15В	109.3
Co1—O1W—H1W	119.6	H15A—C15—H15B	108.0
Co1—O1W—H2W	129.5	C5—C6'—C7'	105 (2)
H1W—O1W—H2W	108.4	С5—С6'—Н6'1	110.7
Co1—O2W—H4W	107.6	С7'—С6'—Н6'1	110.7
Co1—O2W—H3W	138.9	С5—С6'—Н6'2	110.7
H4W—O2W—H3W	108.3	С7'—С6'—Н6'2	110.7
H5W—O3W—H6W	108.6	H6'1—C6'—H6'2	108.8
H7W—O4W—H8W	110.7	C8'—C7'—C6'	114 (3)
H9W—O5W—H10W	109.1	C8'—C7'—H7'1	108.8
H12W—O6W—H11W	106.1	C6'—C7'—H7'1	108.8
O2—C1—O1	124.7 (5)	C8'—C7'—H7'2	108.8
O2—C1—C2	119.0 (4)	C6'—C7'—H7'2	108.8
01—C1—C2	116.4 (4)	H7'1—C7'—H7'2	107.7
N1—C2—C3	110.0 (4)	C7'—C8'—H8'1	109.5
N1—C2—C1	118.2 (4)	C7'—C8'—H8'2	109.5
C3—C2—C1	131.7 (4)	H8'1—C8'—H8'2	109.5

N2—C3—C2	105.1 (4)	С7'—С8'—Н8'3	109.5
N2—C3—C4	121.0 (4)	H8'1—C8'—H8'3	109.5
C2—C3—C4	133.9 (5)	H8'2—C8'—H8'3	109.5
O7W—C4—O3	121.6 (5)	C13—C14'—C15'	110 (2)
O7W—C4—C3	122.0 (5)	C13—C14'—H14C	109.6
O3—C4—C3	116.4 (4)	C15'—C14'—H14C	109.6
N1—C5—N2	110.1 (4)	C13—C14'—H14D	109.6
N1—C5—C6	124.1 (10)	C15'—C14'—H14D	109.6
N2—C5—C6	124.8 (10)	H14C—C14'—H14D	108.1
N1—C5—C6'	127.9 (19)	C16'—C15'—C14'	112 (2)
N2—C5—C6'	119.5 (18)	С16'—С15'—Н15С	109.1
C6—C5—C6'	24.0 (15)	C14'—C15'—H15C	109.1
C5—C6—C7	111.0 (14)	C16'—C15'—H15D	109.1
С5—С6—Н6А	109.4	C14'—C15'—H15D	109.1
С7—С6—Н6А	109.4	H15C—C15'—H15D	107.9
С5—С6—Н6В	109.4	C15'—C16'—H16D	109.5
С7—С6—Н6В	109.4	С15'—С16'—Н16Е	109.5
H6A—C6—H6B	108.0	H16D—C16'—H16E	109.5
C6—C7—C8	108.5 (12)	C15'—C16'—H16F	109.5
С6—С7—Н7А	110.0	H16D—C16'—H16F	109.5
С8—С7—Н7А	110.0	H16E—C16'—H16F	109.5
С6—С7—Н7В	110.0		
O1W—Co1—N1—C5	165.8 (7)	C2—N1—C5—C6	168.5 (10)
O2W—Co1—N1—C5	83.8 (5)	Co1—N1—C5—C6	-9.7 (12)
N3—Co1—N1—C5	-87.1 (5)	C2—N1—C5—C6'	-162.0 (19)
O1—Co1—N1—C5	175.6 (5)	Co1—N1—C5—C6'	20 (2)
O5—Co1—N1—C5	-9.1 (5)	C3—N2—C5—N1	0.0 (5)
O1W—Co1—N1—C2	-12.3 (9)	C3—N2—C5—C6	-168.8 (9)
O2W—Co1—N1—C2	-94.4 (3)	C3—N2—C5—C6'	163.4 (19)
N3—Co1—N1—C2	94.8 (3)	N1—C5—C6—C7	98.6 (14)
O1—Co1—N1—C2	-2.6 (3)	N2C5C7	-94.1 (16)
O5—Co1—N1—C2	172.7 (3)	C6'—C5—C6—C7	-9(5)
O1W—Co1—N3—C13	85.1 (5)	C5—C6—C7—C8	-172.3 (11)
O2W—Co1—N3—C13	173.2 (7)	Co1—O5—C9—O6	-175.8 (3)
N1—Co1—N3—C13	-85.1 (5)	Co1-O5-C9-C10	3.9 (5)
O1—Co1—N3—C13	-6.6 (5)	C13—N3—C10—C11	-0.3 (5)
O5—Co1—N3—C13	174.6 (5)	Co1—N3—C10—C11	173.4 (3)
O1W—Co1—N3—C10	-84.9 (3)	C13—N3—C10—C9	-178.1 (4)
O2W—Co1—N3—C10	3.3 (10)	Co1—N3—C10—C9	-4.5 (5)
N1—Co1—N3—C10	104.9 (3)	O5—C9—C10—N3	0.4 (6)
O1—Co1—N3—C10	-176.5 (3)	O6—C9—C10—N3	-179.9 (4)
O5—Co1—N3—C10	4.7 (3)	O5-C9-C10-C11	-176.8 (4)
O1W—Co1—O1—C1	-178.8 (3)	O6—C9—C10—C11	2.8 (7)
O2W—Co1—O1—C1	90.8 (3)	C13—N4—C11—C10	0.0 (5)
N1—Co1—O1—C1	3.0 (3)	C13—N4—C11—C12	178.7 (4)
N3—Co1—O1—C1	-89.2 (3)	N3—C10—C11—N4	0.2 (5)
O5—Co1—O1—C1	-74.6 (15)	C9—C10—C11—N4	177.6 (4)
O1W—Co1—O5—C9	84.7 (3)	N3—C10—C11—C12	-178.3 (4)
O2W—Co1—O5—C9	175.0 (3)	C9—C10—C11—C12	-0.9 (8)

N1—Co1—O5—C9	-96.2 (3)	N4—C11—C12—O8	-0.6 (6)
N3—Co1—O5—C9	-4.8 (3)	C10-C11-C12-O8	177.6 (4)
O1—Co1—O5—C9	-19.6 (16)	N4-C11-C12-O7	180.0 (4)
Co1—O1—C1—O2	177.2 (3)	C10-C11-C12-O7	-1.8 (7)
Co1-O1-C1-C2	-2.7 (4)	C10—N3—C13—N4	0.2 (5)
C5—N1—C2—C3	0.7 (5)	Co1—N3—C13—N4	-170.0 (3)
Co1—N1—C2—C3	179.5 (3)	C10-N3-C13-C14	-167.0 (10)
C5—N1—C2—C1	-176.7 (4)	Co1—N3—C13—C14	22.7 (12)
Co1—N1—C2—C1	2.1 (4)	C10-N3-C13-C14'	167.2 (15)
O2-C1-C2-N1	-179.6 (4)	Co1—N3—C13—C14'	-3.1 (16)
O1-C1-C2-N1	0.4 (5)	C11—N4—C13—N3	-0.1 (5)
O2—C1—C2—C3	3.8 (7)	C11—N4—C13—C14	167.7 (9)
O1—C1—C2—C3	-176.3 (4)	C11—N4—C13—C14'	-167.3 (15)
C5—N2—C3—C2	0.4 (5)	N3-C13-C14-C15	83 (2)
C5—N2—C3—C4	179.0 (4)	N4-C13-C14-C15	-83 (2)
N1—C2—C3—N2	-0.7 (4)	C14'-C13-C14-C15	178 (10)
C1—C2—C3—N2	176.2 (4)	C13-C14-C15-C16	-172.5 (16)
N1—C2—C3—C4	-179.0 (4)	N1—C5—C6'—C7'	-95 (3)
C1—C2—C3—C4	-2.1 (8)	N2—C5—C6'—C7'	105 (3)
N2—C3—C4—O7W	-0.6 (6)	C6—C5—C6'—C7'	-5(4)
C2—C3—C4—O7W	177.6 (4)	C5—C6'—C7'—C8'	-70 (3)
N2—C3—C4—O3	-179.1 (4)	N3—C13—C14'—C15'	123 (2)
C2—C3—C4—O3	-1.0 (7)	N4—C13—C14'—C15'	-71 (3)
C2—N1—C5—N2	-0.4 (5)	C14—C13—C14'—C15'	23 (6)
Co1—N1—C5—N2	-178.6 (3)	C13—C14'—C15'—C16'	-60 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N2—H2···O4W	0.86	1.89	2.745 (5)	171.
N4—H4···O5W ⁱ	0.86	1.93	2.752 (5)	160.
O3—H3…O2	0.82	1.68	2.500 (4)	179.
O7—H7…O6	0.82	1.64	2.461 (4)	176.
O1W—H1W···O8 ⁱⁱ	0.85	1.87	2.715 (4)	178.
O1W—H2W···O3W ⁱⁱⁱ	0.85	1.81	2.661 (4)	177.
O2W—H4W…O7W ^{iv}	0.85	1.94	2.791 (4)	174.
O2W—H3W····O8 ^v	0.85	2.05	2.897 (4)	175.
O3W—H5W···O2 ^{iv}	0.85	1.95	2.796 (5)	172.
O3W—H6W····O5 ^{vi}	0.85	2.05	2.895 (4)	172.
O3W—H6W···O6 ^{vi}	0.85	2.63	3.206 (4)	127.
O4W—H8W····O6W	0.85	1.89	2.674 (7)	152.
O5W—H9W…O3W ⁱⁱⁱ	0.85	2.08	2.867 (5)	153.
O5W—H10W····O7W ^{iv}	0.85	2.33	3.092 (5)	149.
O6W—H12W…O6W ^{vii}	0.85	1.68	2.162 (11)	113.
O6W—H12W…O1 ^{viii}	0.85	2.14	2.730 (6)	126.
O6W—H11W····O5W ^{iv}	0.85	2.05	2.588 (7)	121.

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) -*x*, -*y*+2, -*z*; (iii) *x*, *y*, *z*-1; (iv) -*x*+1, -*y*+1, -*z*+1; (v) *x*+1, *y*, *z*; (vi) -*x*+1, -*y*+2, -*z*+1; (vii) -*x*+1, -*y*+1, -*z*+2; (viii) *x*, *y*, *z*+1.

03 07 06V C15' 02 C15 C1 04₩ C14 (Q C14 N2 C13 N1 03W 05W N3 C Co1 C6' 02W 01₩ C11 C12 C10 C8 C7' 05) C9 đ n

Fig. 1